82 research outputs found

    The Morphometric Synthesis for landmarks and edge-elements in images

    Full text link
    Over the last decade, techniques from mathematical statistics, multivariate biometrics, non-Euclidean geometry, and computer graphics have been combined in a coherent new system of tools for the biometric analysis of landmarks , or labelled points, along with the biological images in which they are seen. Multivariate analyses of samples for all the usual scientific purposes - description of mean shapes, of shape variation, and of the covariation of shape with size, group, or other causes or effects - may be carried out very effectively in the tangent space to David Kendall's shape space at the Procrustes average shape. For biometric interpretation of such analyses, we need a basis for the tangent space that is Procrustes-orthonormal, and we need graphics for visualizing mean shape differences and other segments and vectors there; both of these needs are managed by the thin-plate spline. The spline also links the biometrics of landmarks to deformation analysis of curves in the images from which the landmarks originally arose. This article reviews the principal tools of this synthesis in a typical study design involving landmarks and edge information from a microfossil.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/75091/1/j.1365-3121.1995.tb00535.x.pd

    The surface detector array of the Telescope Array experiment

    Get PDF
    The Telescope Array (TA) experiment, located in the western desert of Utah,USA, is designed for observation of extensive air showers from extremely high energy cosmic rays. The experiment has a surface detector array surrounded by three fluorescence detectors to enable simultaneous detection of shower particles at ground level and fluorescence photons along the shower track. The TA surface detectors and fluorescence detectors started full hybrid observation in March, 2008. In this article we describe the design and technical features of the TA surface detector.Comment: 32 pages, 17 figure

    New air fluorescence detectors employed in the Telescope Array experiment

    Full text link
    Since 2007, the Telescope Array (TA) experiment, based in Utah, USA, has been observing ultra high energy cosmic rays to understand their origins. The experiment involves a surface detector (SD) array and three fluorescence detector (FD) stations. FD stations, installed surrounding the SD array, measure the air fluorescence light emitted from extensive air showers (EASs) for precise determination of their energies and species. The detectors employed at one of the three FD stations were relocated from the High Resolution Fly's Eye experiment. At the other two stations, newly designed detectors were constructed for the TA experiment. An FD consists of a primary mirror and a camera equipped with photomultiplier tubes. To obtain the EAS parameters with high accuracies, understanding the FD optical characteristics is important. In this paper, we report the characteristics and installation of new FDs and the performances of the FD components. The results of the monitored mirror reflectance during the observation time are also described in this report.Comment: 44 pages, 23 figures, submitted to NIM-

    The evolution of language: a comparative review

    Get PDF
    For many years the evolution of language has been seen as a disreputable topic, mired in fanciful "just so stories" about language origins. However, in the last decade a new synthesis of modern linguistics, cognitive neuroscience and neo-Darwinian evolutionary theory has begun to make important contributions to our understanding of the biology and evolution of language. I review some of this recent progress, focusing on the value of the comparative method, which uses data from animal species to draw inferences about language evolution. Discussing speech first, I show how data concerning a wide variety of species, from monkeys to birds, can increase our understanding of the anatomical and neural mechanisms underlying human spoken language, and how bird and whale song provide insights into the ultimate evolutionary function of language. I discuss the ‘‘descended larynx’ ’ of humans, a peculiar adaptation for speech that has received much attention in the past, which despite earlier claims is not uniquely human. Then I will turn to the neural mechanisms underlying spoken language, pointing out the difficulties animals apparently experience in perceiving hierarchical structure in sounds, and stressing the importance of vocal imitation in the evolution of a spoken language. Turning to ultimate function, I suggest that communication among kin (especially between parents and offspring) played a crucial but neglected role in driving language evolution. Finally, I briefly discuss phylogeny, discussing hypotheses that offer plausible routes to human language from a non-linguistic chimp-like ancestor. I conclude that comparative data from living animals will be key to developing a richer, more interdisciplinary understanding of our most distinctively human trait: language

    Search for Tensor, Vector, and Scalar Polarizations in the Stochastic Gravitational-Wave Background

    Get PDF
    The detection of gravitational waves with Advanced LIGO and Advanced Virgo has enabled novel tests of general relativity, including direct study of the polarization of gravitational waves. While general relativity allows for only two tensor gravitational-wave polarizations, general metric theories can additionally predict two vector and two scalar polarizations. The polarization of gravitational waves is encoded in the spectral shape of the stochastic gravitational-wave background, formed by the superposition of cosmological and individually unresolved astrophysical sources. Using data recorded by Advanced LIGO during its first observing run, we search for a stochastic background of generically polarized gravitational waves. We find no evidence for a background of any polarization, and place the first direct bounds on the contributions of vector and scalar polarizations to the stochastic background. Under log-uniform priors for the energy in each polarization, we limit the energy densities of tensor, vector, and scalar modes at 95% credibility to Ω0T<5.58×10-8, Ω0V<6.35×10-8, and Ω0S<1.08×10-7 at a reference frequency f0=25 Hz. © 2018 American Physical Society

    Detectable clonal mosaicism and its relationship to aging and cancer

    Get PDF
    In an analysis of 31,717 cancer cases and 26,136 cancer-free controls from 13 genome-wide association studies, we observed large chromosomal abnormalities in a subset of clones in DNA obtained from blood or buccal samples. We observed mosaic abnormalities, either aneuploidy or copy-neutral loss of heterozygosity, of >2 Mb in size in autosomes of 517 individuals (0.89%), with abnormal cell proportions of between 7% and 95%. In cancer-free individuals, frequency increased with age, from 0.23% under 50 years to 1.91% between 75 and 79 years (P = 4.8 × 10(-8)). Mosaic abnormalities were more frequent in individuals with solid tumors (0.97% versus 0.74% in cancer-free individuals; odds ratio (OR) = 1.25; P = 0.016), with stronger association with cases who had DNA collected before diagnosis or treatment (OR = 1.45; P = 0.0005). Detectable mosaicism was also more common in individuals for whom DNA was collected at least 1 year before diagnosis with leukemia compared to cancer-free individuals (OR = 35.4; P = 3.8 × 10(-11)). These findings underscore the time-dependent nature of somatic events in the etiology of cancer and potentially other late-onset diseases

    Developments in the modelling of nonstationary spatial covariance structure from space-time monitoring data

    No full text
    International audienc

    Modelling non-stationary spatial covariance structure from space-time monitoring data

    No full text
    International audienc

    Genome variation in Mycobacterium tuberculosis

    No full text
    Genome variation is the main underlying reason for phenotypic differences observed between organisms from the same species. This includes minor variations like single nucleotide polymorphisms, but also large sequence polymorphisms due to deletions and insertions. Some of these variations are of insignificant functional importance, but others may lead to an increase in viability and, in the case of microbes, possibly an increase in pathogenicity. However, the influence of variations on phenotype is not always dependent on the size of the mutated domain, and even single nucleotide polymorphisms can cause significant changes in an organism. This is of course an important area of research into studying pathogenic organisms and their epidemiological features. Mycobacterium tuberculosis strains also display a degree of strain variation, which has been previously suggested to be important for the outcome of disease. Certain strains are postulated to be more or less virulent, persistent, transmissible, or immunopathological. These variations do not only have important implications for the spread of the disease, but provide us with tools to characterize transmission, which have been used extensively for a number of years in tuberculosis molecular epidemiology. In this article, we discuss the different methods which are available for detecting genome variation; we look at the different mechanisms which cause this variation (including insertions, deletions, duplications and single nucleotide polymorphisms), and review the consequences and implications of this genome variation with regard to Mycobacterium tuberculosis pathogenicity.Revie
    corecore